產業節能減碳推動之技術與服務項目介紹

分類	編號	項目	介紹	應用
A.廢熱 回收節 能技術	A1	蓄熱式燃 燒系統	◆ 透過蓄熱體自高溫廢氣取熱, 以加熱新鮮空氣並導回爐內 成為高溫助燃氣體之方式回 收廢熱,廢熱回收率最高達 90%,與無廢熱回收比較可減 少燃料使用 25-45%。	◆ 適用於金屬產業鏈直 火式800℃以上高溫熔解、加熱、熱處理等工 解、加熱、熱處理等工 業爐,目前已成功導入 至鋼鐵、鑄造、金屬製 品及化工等產業。
	A2	自預熱式 燃燒系統	◆ 將金屬熱交換器整合於燃燒器中,直接引入助燃空氣進行預熱,以回收工業爐燃燒之廢熱,達到節能 10-20%,減碳10-30%之效益。	◆ 適用於 500-950℃之 熱處理及加熱製程之 燃燒工業爐。
	A3	廢熱回收 發電暨 製程節能 優化技術	◆ 擷取加熱爐之管道煙氣熱能, 再輔以高壓熱水熱交換系統 驅使朗肯循環(ORC)系統發 電。	◆ 適用於金屬產業 400℃ 以上燃燒加熱爐,工業 爐、廢棄焚化爐、廢氣 燃燒爐、旋轉爐等,鋼 鐵及化工等產業。
B.設備 技化	B1	智慧化真 空熱處理 系統	◆ 智慧化真空熱處理設備導入 即時智能監控與數據蒐集,不 僅更有效率的執行熱處理製 程,降低能耗。	◆ 適用於加熱爐、固溶化 爐、退火爐、熱處理設 備等高溫工業爐。
	B2	精準連續 熱處理系 統	→ 採智慧化控制連續熱處理系統,優化設備中焠火油槽及收料之機構,改善精微零件熱處理變形與滲層不均之缺點,大幅改善硬度不足問題,有效改善其機械性質,超越國際水準。	◆ 適用金屬產業零件熱 處理製程。
	В3	真空 PVD 鍍膜系統	利用 PVD 鍍膜系統進行表面處理,取代傳統電鍍製程,導入薄膜鍍膜技術,可有效增加製品的表面硬度、增加使用壽命,達到製程設備耗電量降低、重金屬汙染降低等效益。	◆ 可符合長時間連續鍍 膜設計,適用小零件真 空鍍膜,及模具、刀具、 金屬製品業者。
	B4	設備製程 能耗分析 與管理技 術	◆ 有效掌握設備的耗氣量與相關數據加以分析,透過對設備製程的解析與數據來降低不需要的壓縮空氣耗費。進而達到公用能源的管理。而機台壓縮空氣的耗用量亦可以做為機台預警與製程能力的依據,協助維護人員作為機台預防保養或供換核心元件的重要依據。	◆ 適用場域壓縮機等耗 能設備。

分類	編號	項目	介紹	應用
C.智慧排管理	C1	產品碳足 跡追溯系 統	◆ 根據場域產品、製程、活動條件設計,自動化介接全廠 ERP/MES 與產品碳足跡資料,以可視化儀表板呈現產品碳足跡資訊與工廠碳排資訊。	◆ 首要以扣件產業作為 應用推動,服務系統可 擴及鋼鐵、鑄造、金屬 製品等相關業者場域。
	C2	表面處理 產業製程 追溯系統	◆ 整合管理系統,製程中各鍍槽的製程參數(如:溫度、濃度、pH、TDS、電流、電壓、安培小時…等)與工單資訊、品質檢測(膜厚、外觀…)及飛靶報工。透過 AI 運算,找出最佳操作參數,提高生產良率,減少浪費及單位產品能耗。	◆ 適用表面處理產業,溼 式製程如:電鍍、陽極 處理、化學鍍。
	С3	熱處理排 程優化與 可視化技 術	◆ 藉由生產流程資訊可視化平台及智慧生產排程,達到平衡工廠製程流量,以追求有效產出的極大化(非最大產能極大化) 之 DBR 生產管制。	◆ 即時揭示各製程對瓶 頸需求備料與品質工 態,讓管理者及員工都 能對生產過程進行即 時確認,以提前解決問 題充分保護瓶頸製 的運作。適用鑄造、非 鐵金屬、金屬製品業。
D.製程 技術/參 數優化	D1	高週波加 熱控制技 術	◆ 以高週波加熱控制技術來取代傳統瓦斯燃燒方式,客製化感熱線圈設計可達即時加熱升溫,可隨產品製程配方做最佳化加熱控制,達到節能效果。	◆ 適用於瓦斯加熱方式 設備。
	D2	鑄造製程 節能減碳 技術	鑄造減碳優化分析技術與減碳技術。導入低碳材料與智能節能技術,預期可有效降低製程能耗與材料消耗,並落實產業減碳轉型。	◆適用鑄造產業。
	D3	鑄造全製 程模擬與 品質可視 化技術	◆ 針對產品材料,建立選用分析 與配方設計參數庫。◆ 建立模具設計與模流分析技 術能力。◆ 導入鑄造方案設計模式與鑄 造製程智機化技術,提升製程 生產效能。	◆ 適用鑄造、非鐵金屬、 金屬製品業。
	D4	鑄件製程 品質優化 與設備能 源效率改 善	◆ 輔導鑄造廠商改善鑄造製程 參數與設備,提升製程效率及 改善能耗,促成良率品質優化 減少廢品與廢料,間接達到減 排效益。運用 NDT 非破壞檢 測鑄造或焊接製品,於工序間 檢出缺陷,減少不良品無謂製 程浪費,間接達到減排效益。	◆ 適用鑄造等高碳排與 能耗製程/設備·包括感 應加熱爐、火焰切割 機、噴塗機、烘烤機等 高熱能與碳排設備、及 抛丸噴砂機、電焊機、 加工機、混砂機等用電 設備。

分類	編號	項目	介紹	應用
	D5	減碳智能 銲接技術	◆ 銲接減碳優化預測分析技術 與入熱冶金控制技術。導入厚 板/複雜結構智能銲接,預期 可有效降低製程能耗與材料 消耗,並落實銲接產業減碳轉 型。	◆ 適用於金屬製品業/銲 接製程/銲接設備。
	D6	熱交換器 中大型伸 縮管一體 成形技術	◆ 高壓熱流環境熱交換器之伸縮管一體成形技術,材質 SUS304、厚度≥6mm,有別於傳統伸縮管之板材沖壓+焊接製程,此高階產品一體成形技術,其管徑尺寸精度佳、製程工序減少2道、不良率低,並且能達到製程節能30%效益。	◆ 適用於嚴苛高壓熱流 環境下之中大型一體 成形伸縮管,於石油、 化工、電力及鋼鐵廠等 產業之熱交換器或壓 力容器管殼應用。
	D7	超高強度 鋼鈑件之 省工輥壓 成形技術	◆ 超高強度鋼保險桿內樑產品, 飯件上下同步輥壓成形技術 並結合高速雷射焊接之一體 成形製程,應用超高強度鋼≥ 1,300MPa,輕量減重≥10%, 製程減少3道工序,生產效率 提升20%,並且能達到製程節 能25%效益。	◆ 適用於運輸載具相關 車身、底盤結構鈑件, 可應用如汽車之前後 保桿內鐵、車門防撞 樑、門檻鈑等應用。
	D8	煉鋼用助 熔劑之鋁 酸鈣取代 螢石	◆ 氧化鋁渣循環回收:以氧化鋁 渣與碳酸鈣合成開發鋁酸鈣 除渣劑,取代氟化鈣除渣劑。	◆ 作為適用於煉鋼與高 溫熔煉使用之除渣劑。
	D9	鑄造模擬 與數位鑄 造多軌減 碳	◆ 傳統鑄造方案與對應工作流程中的參數,產生誤差導致多元耗能;本技術為應用數位分析、數位鑄造與快速試作驗證,達到低碳最佳化路徑。	◆ 適用於鑄造模擬、數位 鑄造與流程低碳最佳 化分析。
	D10	精實生產 工具	◆ 運用價值流與精實改善工具 (ECRS、防錯、平準化、標準 作業等),消除製程中的能資 源浪費,以減少水/電/氣/燃料 之用量及原物料不良損耗。	◆ 適用各產業。
E. 綠電 創能技 術	E1	綠電建 置、憑證 綠電及 低碳燃料 導入	 輔導廠商建置太陽光電系統自發自用及導入憑證綠電,降低企業用電能耗之碳排量。 輔導廠商轉換產線熱源之燃料使用類型,逐步替換為天然氣等低碳燃料。 	◆ 適用於企業廠房/鑄造等高碳排與能耗製程/設備,包括感應加熱爐、火焰切割機、噴塗機等高熱能與碳排設備、及拋丸噴砂機、電焊機、加工機、混砂機等用電設備。

分類	編號	項目	介紹	應用
F. 與服盤證務	F1	高耗能裝 置與診 轉導+CQI- 9及 IPMVP量 測及驗 技術	◆ 進廠檢視廠內設備與系統之 運轉現況,並且提出節能減碳 可行建議,從高耗能裝置與能 源管理面推動節能設備改善, 有效管理經營成本。	◆ 適用各產業,針對工廠 設備系統 (泵浦節能系 統、冷卻水塔系統、風 機節能、空壓系統、空 調系統、電力系統、照 明系統、綠能及儲能評 估等面向)。
	F2	ISO 14064 組織碳盤 查輔導	◆ 擷依據 ISO 14064-1 及環保	◆ 適用各產業。
	F3	ISO 14067 產品碳足 跡輔導	 協助選擇產品碳足跡宣告/功能單位項目,依其製程地圖進行相關直接原物料、輔助材料、包裝材料數據之收集及切斷原則建立。 協助企業取得第三方合理保證等級查證聲明書。 協助客戶建立碳足跡量化能量。輔導團隊均受過ISO14067主導查證員訓練,計畫主持人由具15年以上產業經驗人員擔任。 	◆ 適用各產業,自願性盤 查自身產品溫室氣體 排放量的廠商。
	F4	溫室氣體 組織查證 服務	◆ 本中心配合政府 2050 淨零排放目標,依據溫室氣體查證與確證機構適用之 ISO 國際標準及 TAF 發行之查證機構認證規範之相關要求,建置 ISO 14064-1 溫室氣體(GHG)查證制度,並提供客戶溫室氣體第三者查證相關服務,協助取得溫室氣體查驗證書。	◆ 適用各產業。本中心目前已獲得金屬產業及 基本金屬類別之 TAF認可資格,可提供溫室 氣體自願性方案查證服務,未來將持續增加 TAF認可領域,滿足各 產業別客戶之認證需求。